[1] Zhe Meng*, Qian Yan, Feng Zhao, and Miaomiao Liang. Multi-scale feature attention and transformer for hyperspectral image classification[C]//Proceeding of the 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). Athens, Greece, 2023: 1-5. [2] Zhe Meng*, Qian Yan, Feng Zhao, and Miaomiao Liang. Hyperspectral image classification with dynamic spatial-spectral attention network[C]//Proceeding of the 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). Athens, Greece, 2023: 1-4. [3] Zhe Meng*, Licheng Jiao, Miaomiao Liang, and Feng Zhao. A lightweight spectral-spatial convolution module for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters (GRSL), 2022, 19: 5505105. [4] Zhe Meng, Junjie Zhang, Feng Zhao*, Hanqiang Liu, and Zhenhui Chang. Residual dense asymmetric convolutional neural network for hyperspectral image classification[C]//Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Kuala Lumpur, Malaysia, 2022: 3159-3162. [5] Zhe Meng*, Feng Zhao, Miaomiao Liang, and Wen Xie. Deep residual involution network for hyperspectral image classification[J]. Remote Sensing (RS), 2021, 13(16): 3055. [6] Zhe Meng*, Licheng Jiao, Miaomiao Liang, and Feng Zhao. Hyperspectral image classification with mixed link networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS), 2021, 14:2494-2507. [7] Zhe Meng*, Feng Zhao, and Miaomiao Liang. SS-MLP: A novel spectral-spatial MLP architecture for hyperspectral image classification [J]. Remote Sensing (RS), 2021, 13(20): 4060. [8] Zhe Meng, Lingling Li*, Xu Tang, Zhixi Feng, Licheng Jiao, and Miaomiao Liang. Multipath residual network for spectral-spatial hyperspectral image classification[J]. Remote Sensing (RS), 2019, 11(16): 1896. [9] Zhe Meng, Lingling Li*, Licheng Jiao, Zhixi Feng, Xu Tang, and Miaomiao Liang. Fully dense multiscale fusion network for hyperspectral image classification[J]. Remote Sensing, 2019, 11(22): 2718. [10] Junjie Zhang, Zhe Meng*, Feng Zhao*, Hanqiang Liu, and Zhenhui Chang. Convolution transformer mixer for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters (GRSL), 2022, 19: 6014205. [11] Feng Zhao, Junjie Zhang, Zhe Meng*, and Hanqiang Liu. Densely connected pyramidal dilated convolutional network for hyperspectral image classification[J]. Remote Sensing, 2021, 13(17): 3396. [12] Feng Zhao, Junjie Zhang*, Zhe Meng, Hanqiang Liu, Zhenhui Chang, and Jiulun Fan. Multiple vision architectures-based hybrid network for hyperspectral image classification[J]. Expert Systems With Applications (ESWA), 2023, 234: 121032. [13] Miaomiao Liang*, Licheng Jiao, and Zhe Meng. A superpixel-based relational autoencoder for feature extraction of hyperspectral images[J]. Remote Sensing, 2019, 11(20): 2454. [14] Miaomiao Liang, Huai Wang, Xiangchun Yu*, Zhe Meng, Jianbing Yi, and Licheng Jiao. Lightweight multilevel feature fusion network for hyperspectral images classification[J]. Remote Sensing, 2022, 14(1): 79. [15] Miaomiao Liang, Jian Dong, Lingjuan Yu, Xiangchun Yu, Zhe Meng, and Licheng Jiao. Self-supervised learning with learnable sparse contrastive sampling for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2023. [16] Miaomiao Liang, Qinghua He, Xiangchun Yu*, Huai Wang, Zhe Meng, and Licheng Jiao. A dual multi-head contextual self-attention network for hyperspectral image classification[J]. Remote Sensing, 2022, 14(13):3091. |