[1] Super-Resolution of Brain MRI Images using Overcomplete Dictionaries and Nonlocal Similarity, Yinghua Li, Bin Song, Jie Guo, IEEE Access (中科院二区,JCR-Q1, IF:3.557). Vol. 7, Issue 1, pp. 25897-25907, 2019. [2] Image Encryption Based on Compressive Sensing and Scrambled Index for Secure Multimedia Transmission, Yinghua Li, Bin Song, Rong Cao. ACM Transactions on Multimedia Computing, Communications, and Applications (中科院三区,JCR-Q2,IF: 2.019), Vol. 12 Issue 4, Nov. 2016, Article No. 62. [3] Vehicle-Type Detection Based on Compressed Sensing and Deep Learning in Vehicular Networks, Yinghua Li, Bin Song, Xu Kang, Xiaojiang Du. Sensors (中科院三区, JCR-Q2, IF:2.475), Vol. 18, Issue 12, No.4500. [4] Image Encryption Based on a Single-round Dictionary and Chaotic Sequences in Cloud Computing, Yinghua Li, Bin Song, Jinjun Chen. Concurrency and Computation: Practice and Experience (高被引, JCR-Q3,). Vol. 33, Issue 7, April 2021, DOI: 10.1002/cpe.5182. [5] Performance analysis and hardware implementation of a nearly optimal buffer management scheme for high-performance shared memory switches, Zheng L, Pan W, Li Y. International Journal of Communication Systems, 2020, 33. [6] Group Bilinear CNNs for Dual-Polarized SAR Ship Classification, Jinglu He, Wenlong Chang, Fuping Wang, Ying Liu, Yinghua Li, IEEE Geoscience and Remote Sensing Letters, Vol. 19, 2022. [7] Multi-level Feature Extraction and Edge Reconstruction Fused Generative Adversarial Networks for Image Super Resolution, Li, Yinghua; Liu, Yue; Liu, Ying; Qiao, Yangge; He, Jinglu, 2023 5th International Conference on Natural Language Processing, ICNLP 2023, pp.113-120, 2023 [8] Light-weight Super-Resolution Network based on Classified Measurement-domain Features, Shuo Li, Yinghua Li, Dan Xu, Ying Zhang, Jinglu He, September 2023, 6th International Conference on Artificial Intelligence and Pattern Recognition, AIPR2023. [9]基于测量域二次采样的自适应压缩感知图像编码,曹茸,李莹华,宋彬,《中国科技论文》2016年第20期 [10]基于压缩感知的超分辨率重建研究综述,李莹华,乔杨歌,刘颖.西安邮电大学学报, 2021,26(2):9. [11]基于学习的图像超分辨率技术回顾与展望,李莹华,刘悦,刘颖,西安邮电大学学报, 2022,27(2):72-87. [12]图像超分辨率技术的回顾与展望,刘颖,朱丽,林庆帆,李莹华.计算机科学与探索, 2020, 014(002):181-199. [13]基于深度学习的小目标检测研究与应用综述.刘颖,刘红燕,范九伦,公衍超,李莹华,王富平.电子学报,48(3),12. 专利: [1] 宋彬; 王宇; 郭洁; 李莹华; 秦浩; 基于测量域分块显著性检测的压缩感知图像重构方法, 2015-12-31, 中国, ZL201511029884.4. [2] 宋彬; 杨荣坚; 曹茸; 李莹华; 秦浩; 一种双目视觉的图像超分辨率融合去噪方法, 2016-8-10, 中国, CN201610159959.9. [3] 何敬鲁; 常文龙; 王富平; 刘颖; 李莹华; 基于分组双线性卷积神经网络的双极化雷达舰船分类方法, 2022-05-31, 中国, CN202210618884.1. [4] 田方; 宋彬; 魏正; 刘海啸; 李莹华; 基于支撑集和信号值检测的视频压缩感知重构方法, 2014-10-29, 中国, CN104125459A. [5] 徐健; 何春梦; 赵钰蓉; 益琛; 李莹华; 范九伦; 雷博; 一种基于变分自编码的盲图像超分辨率重建方法及系统, 2023-10-27, 中国, CN115880158B. |